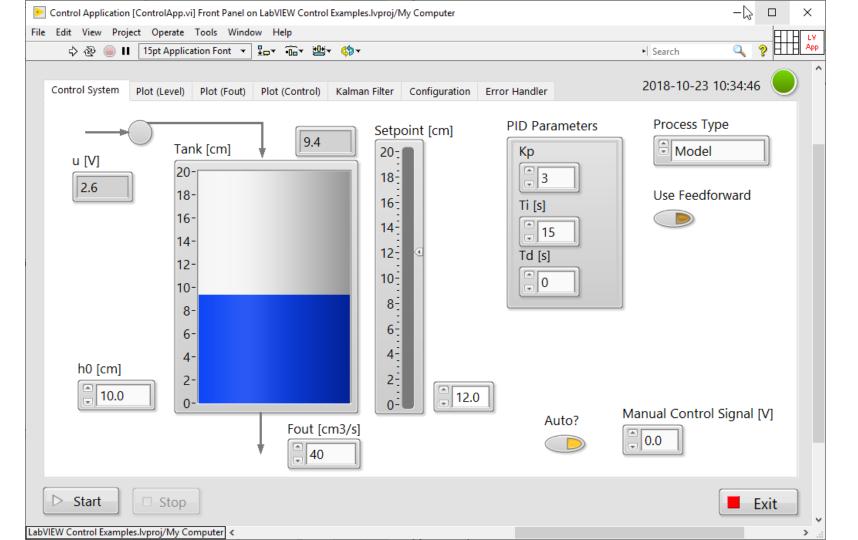


Kalman Filter Application



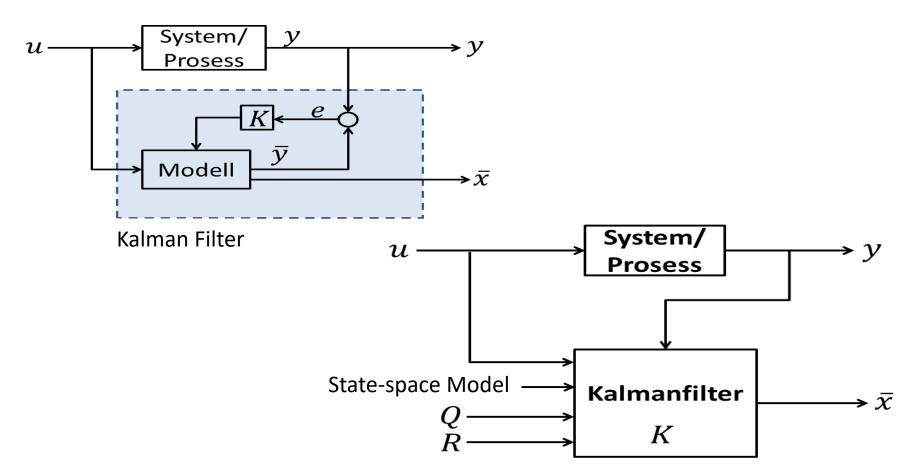
https://www.halvorsen.blog

Kalman Filter

Kalman Filter

- The Kalman Filter is a commonly used method to estimate the values of state variables of a dynamic system that is excited by stochastic (random) disturbances and stochastic (random) measurement noise.
- We will estimate the process variable(s) using a Kalman Filter.
- We will use one of the built-in Kalman Filter algorithms in LabVIEW, but in addition we will create our own Kalman Filter algorithms from scratch.

Kalman Filter



Kalman Filter Algorithm

Pre Step: Find the steady state Kalman Gain K

K is time-varying, but you normally implement the steady state version of Kalman Gain K. Use the "CD Kalman Gain.vi" in LabVIEW or one of the functions kalman, kalman_d or lqe in MathScript.

Init Step: Set the initial Apriori (Predicted) state estimate

$$\bar{x_0} = x_0$$

Step 1: Find Measurement model update

$$\bar{y}_k = g(\bar{x}_k, u_k)$$

For Linear State-space model:

$$\bar{y}_k = C\bar{x}_k + Du_k$$

Step 2: Find the Estimator Error

$$e_{\nu} = y_{\nu} - \bar{y}_{\nu}$$

Step 3: Find the Aposteriori (Corrected) state estimate

$$\hat{x}_k = \bar{x}_k + Ke_k$$

Where K is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the time-varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update

$$\bar{x}_{k+1} = f(\hat{x}_k, u_k)$$

For Linear State-space model:

$$\bar{x}_{k+1} = A\hat{x}_k + Bu_k$$

Step 1-4 goes inside a loop in your program.

Note! Different notation is used in different literature:

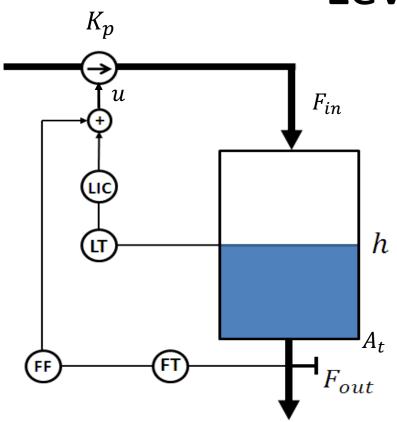
Apriori (or Predicted) state estimate: \bar{x} or x_p

Aposteriori (or Corrected) state estimate: \hat{x} or x_c

https://www.halvorsen.blog

Water Tank Process

Level Tank



$$A_t \frac{dh}{dt} = F_{in} - F_{out}$$

or:

$$\dot{h} = \frac{1}{A_t} (K_p u - F_{out})$$

Where:

- F_{in} flow into the tank , F_{in} = $K_p u$
- F_{out} flow out of the tank
- A_t is the cross-sectional area of the tank

Level Tank

$$\dot{h} = \frac{1}{A_t} (K_p u - F_{out})$$
 $\dot{F}_{out} = 0$ Assumption: $F_{out} \approx \text{constant}$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$x_1 = h$$

$$x_2 = F_{out}$$

$$\dot{x}_1 = -\frac{1}{A_t}x_2 + \frac{1}{A_t}K_pu$$

$$\dot{x}_2 = 0$$

$$y = x_1$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{A_t} \\ 0 & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} K_p \\ A_t \\ 0 \end{bmatrix}}_{B} u$$

$$y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Estimation and Kalman Filters in LabVIEW

State Estimation in LabVIEW

"LabVIEW Control
Design and Simulation
Module" has built-in
features for State
Estimation, including
different types of
Kalman Filter algorithms

Control & Simulation

Fuzzy

Fuzzy Logic

---→

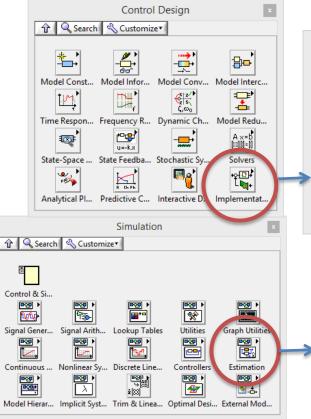
ontrol Desi... System Ident...

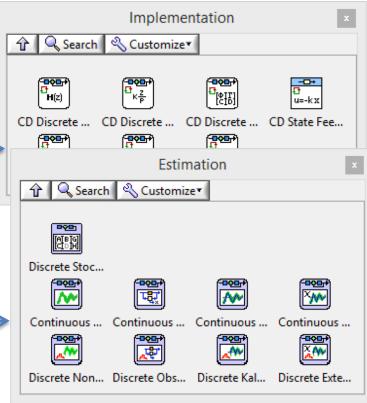
Search Customize

*₽

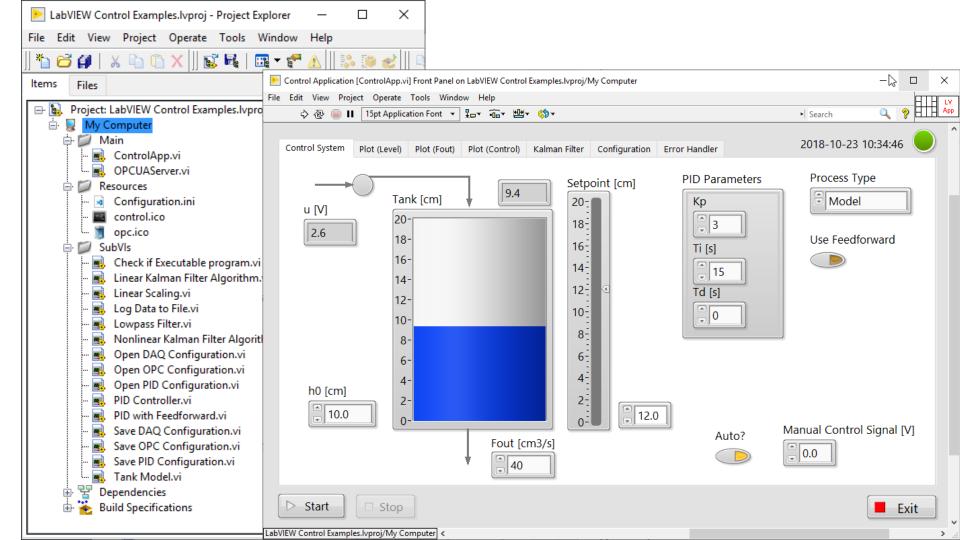
₽

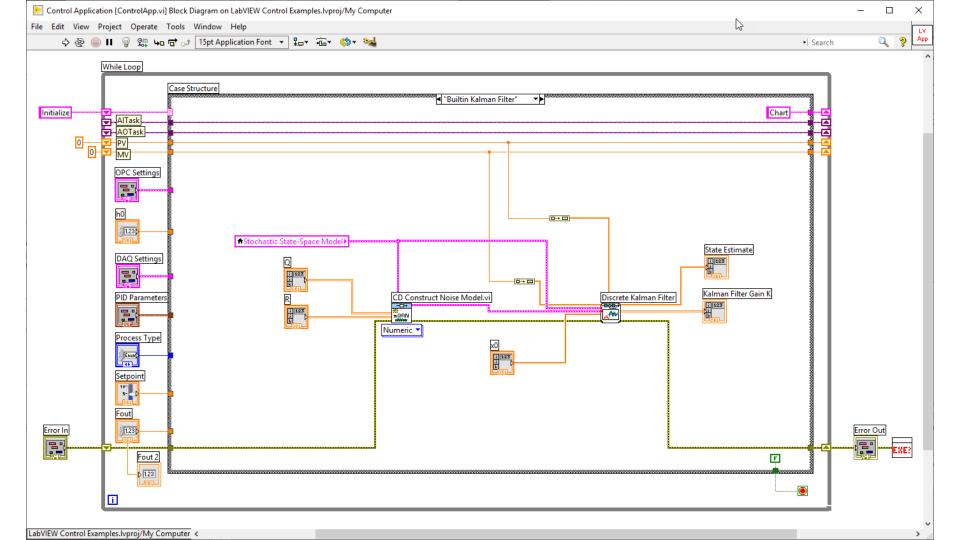
Simulation





Kalman Filter LabVIEW Application





Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: halvorsen@usn.no

Web: https://www.halvorsen.blog

